Swansea University 2022 Fully Funded Swansea and UKAEA PhD Scholarship

The inside of a fusion reactor is one of the most challenging environments known about, with temperatures ranging from the hottest in the solar system (100,000,000 °C at the centre of the plasma) to the coolest (-269 °C in the cryopump) all within a few metres, coupled with electro-magnetic loads and irradiation damage. This has already been achieved for short periods of time at JET, the world’s largest fusion device located at Culham Centre for Fusion Energy (UKAEA), UK. But one of the greatest engineering challenges of the 21st century will be to construct a machine that can operate under these extremes routinely and produce commercially viable energy.

The inside of a fusion reactor is one of the most challenging environments known about, with temperatures ranging from the hottest in the solar system (100,000,000 °C at the centre of the plasma) to the coolest (-269 °C in the cryopump) all within a few metres, coupled with electro-magnetic loads and irradiation damage. This has already been achieved for short periods of time at JET, the world’s largest fusion device located at Culham Centre for Fusion Energy (UKAEA), UK. But one of the greatest engineering challenges of the 21st century will be to construct a machine that can operate under these extremes routinely and produce commercially viable energy.